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1. Introduction

Although B, = 1.5T remains the predominant field strength for clinical MRI, 3.0T magnets are
making substantial inroads into routine practice. The move to 3.0T is driven mainly by its
approximate doubling of the signal-to-noise ratio (SNR) compared to 1.5T. The improved SNR
can be used to shorten the acquisition time, to improve spatial resolution at a fixed scan time, or a
combination of the two. The scaling of other physical parameters such as the doubling of the
susceptibility variation (as measured in hertz) can aid applications like fMRI that use the BOLD
effect. Similarly the doubling of the chemical shift (again, measured in hertz) from 1.5 to 3.0T
can aid peak separation for spectroscopy.

Along with its advantages, however, imaging at 3.0T presents several challenges and pitfalls.
Some artifacts are more prominent on MR images acquired at 3.0T compared to 1.5T. In this
abstract, several commonly observed 3.0T artifacts and their origins are described. In some cases,
specific countermeasures that can be applied to reduce the artifacts are also described.

As the advantages and drawbacks of high-field imaging continue to be evaluated, successful use
of 3.0T continues to be reported [1-7]. Promising applications of 3.0T include, but are not limited
to, anatomical and functional neuro MR, musculoskeletal (MSK) MR, MR angiography (MRA),
and cardiac MR.

To better understand the advantages of 3.0T, along with its artifacts and their origins, it is useful
to recall how several physical parameters scale [8-13] as the field strength is increased from 1.5T
to 3.0T. Some basic scaling relationships are reviewed in Section 2. It is important to recognize
that in all of these scaling relationships, there are no abrupt changes or discontinuities in the
physical parameters as the field strength is progressively increased. Therefore, any artifact that is
present at 3.0T can also be present at 1.5T, although at the lower field strength the intensity of the
artifact might be far less objectionable. Consequently, strictly speaking, the term “3T artifact” is a
misnomer, even though it accurately describes everyday observations.

2. Scaling of physical parameters

1. Signal-to-noise ratio (SNR). In the range of clinically-used field strengths,
0.2T < B, <3.0T , the SNR scales approximately linearly with main field B, :

SNR o B, (1)

The linear scaling in Eq. (1) assumes that the noise in the MRI scan is originating
predominantly from the patient rather than other sources, such as the electronics.



Susceptibility variation. Variations in the local B, field arise at boundaries between different
types of tissues, such as air-soft tissue and soft tissue-bone. Although the relative frequency
variation measured in parts per million (ppm) of By is independent of field strength, the
frequency variation measured in hertz is linearly proportional to field strength of the main
magnet:

Af [measuredin Hz] :ZLAB « B, (2)
T

Chemical shift (CS). Similar to susceptibility variation, the chemical shift measured in ppm is
independent of field strength, but the chemical shift measured in hertz is linearly proportional
to field strength:

CS[measuredin Hz] « B, (3)

Water resonates at a Larmor frequency that is approximately 3.3-3.5 ppm higher than lipids.
This corresponds to approximately 140-150 Hz per Tesla. (The range of frequencies arises
because the lipid resonance is rather broad due to its multiple constituents and their relatively
short T2s.) Therefore at 3.0T water resonates at a Larmor frequency approximately 420-440
Hz higher than that of fat.

RF power deposition, as measured by the specific absorption rate (SAR). In the range of
clinically-used field strengths, 0.2T < B, <3.0T , SAR approximately scales quadratically

with field strength:
SAR oc B (4)

Longitudinal relaxation time (T,). The longitudinal relaxation time increases for some tissues
(such as brain parenchyma) as By increases, while it remains the same for others (like cerebral
spinal fluid). Fortunately, the T, of chelated gadolinium contrast agents does not increase
very much. For example, a decrease in the relaxivity R of 5-10% is typical when going from
1.5T to 3.0T. At a given concentration of contrast [Gd] (measured in units of mM), the T, of
the tissue is given by

+R><[Gd], (5)
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where T10 is the longitudinal relaxation time in the absence of contrast agents. Because the T,

of the un-enhanced tissue typically increases more than the enhancing tissue, often equivalent
doses of gadolinium chelate produce a greater effect at 3.0T than at 1.5T [7].
RF wavelength (4). The RF wavelength in a medium is proportional to the speed of light in

that mediumc and inversely proportional to RF frequency f :
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The RF frequency is invariably set at (or near) the Larmor frequency, f = ( vl 27r) B, , with
y12m = 42.576 MHz/T. So the RF wavelength is inversely proportional to the main magnetic
field B,

C. .
ﬂ e medium 7
B, (7)

The speed of light in the medium is equal to the speed of light in a vacuum

(¢ =2.9979x10° m/s), reduced by a factor that depends on the electric permittivity & and
magnetic permeability x of the medium,

S (8)

medium
VEu

(The permittivity and permeability in these units are both equal to unity in vacuum). Human
tissue is not very magnetic, so we can assume that g = 1. Making this assumption and combining

Egs. (6) and (7) yields:
1
Ao

(9)
JeB,
The dielectric constant itself usually decreases slowly with increasing frequency. For example,
the dielectric constant of water for static electric fields is approximately 80, but it is only about
1.8 for electromagnetic frequencies corresponding to visible light. In the RF frequency range, the
wavelength in many tissues [14] can be reduced by several fold by dielectric effects.

3. Commonly Observed 3T Artifacts
1. Chemical shift in the frequency-encoded direction

The chemical shift artifact in the frequency-encoded direction shifts fat relative to water [15,16]
by a fixed number of pixels. At 3.0T water resonates at a Larmor frequency that is 420-440 Hz
higher than that of lipids. At a fixed receiver bandwidth (BW) measured in hertz/pixel, the fat-
water chemical shift will be twice as many pixels compared to 1.5T. This often leads to an
objectionable amount of chemical shift in the frequency-encoded direction in 3.0T images (Fig.
1a). Fat suppression techniques can be helpful but are not applicable to all imaging protocols. A
more general remedy is to double the receiver BW at 3.0T compared to corresponding 1.5T

protocol (Fig. 1b). Doubling the receiver BW costs a factor of J2 ~1.4 in the SNR. Since SNR

approximately doubles when going from 1.5T to 3.0T, 3.0T still offers a remaining factor of \/E
improvement in SNR, even when the chemical shift artifact is held constant.

2. Chemical shift in the slice direction in 2D imaging

Chemical shift in the slice direction [15] also can be objectionable at 3.0T. It is most easily
observed where the fat structure is tilted relative to the slice selection direction. Figure 2a shows
an example of an axial brain image, where the fat from a more cranial (superior) slice is
superimposed on the image, obscuring brain tissue. Fat is shifted from anterior-to-posterior at the



front of the head, and from posterior-to-anterior at back of the head. This differs from chemical
shift in the frequency-encoded direction, which (for standard Cartesian imaging) is a spatial shift
in the same direction throughout the image. Reversing the sign of the slice selection gradient
would alleviate this problem at the top of the head, because fat would then be shifted away from
the brain, but probably would introduce the same problem at the skull base where the skull slopes
in the opposite direction. A more general solution is to increase the BW of the radiofrequency
(RF) pulses (Fig. 2b). This can be accomplished by reducing the duration of the RF pulses,
increasing their amplitude, and increasing the amplitude of the accompanying slice selection
gradients. One disadvantage of increasing the RF bandwidth is the RF heating, because SAR is
linearly proportional to RF BW. Equation (4) illustrates how SAR increases with field strength in
general, so increasing the RF BW at 3.0T can be problematic for pulse sequence protocols that
operate near regulatory limits. Fortunately, many pulse sequence protocols operate well below
the regulatory limits for SAR at 1.5T, so that operation at 3.0T does not present a problem.
Notable exceptions include some fast spin echo/turbo spin echo acquisitions (especially HASTE,
i.e., single-shot methods), and TrueFISP (i.e., FIESTA or balanced FFE). Also, unlike receiver
BW, RF bandwidth is typically not an operator-selectable parameter, so modification to the pulse
sequence is usually required to increase it.

3. Fat/water in- and out-of-phase times for gradient echo imaging
Since the fat-water chemical shift doubles at 3.0T compared to 1.5T, the echo times TE at which

fat and water are in-phase or have opposed phase are different at 3.0T. The TE times are
summarized in the following table, which is based on a chemical shift of 3.4 ppm:

TE (ms) Fat/Water in-phase Fat/Water out-of-phase
15T 0,4.6,9.2,138, ... 2.3,6.9,115, ...
3.0T 0,23,46,6.9, ... 1.2,35,58, ...

4. Susceptibility artifacts causing incomplete inversion

A common 3.0T artifact is incomplete inversion of the magnetization in regions of rapid
susceptibility variation. Many applications at both 1.5T and 3.0T use inversion pulses (e.g.,
FLAIR). Also, at 3.0T it is more challenging to obtain T1-weighted contrast due to longer T1
values, and a somewhat compressed spectrum of T1 values. Consequently, inversion-based pulse
sequences like MP-RAGE and MDEFT are popular at 3.0T to generate T1-weighted contrast.

The incomplete inversion of magnetization often manifests as bright spots near air-tissue
boundaries (Fig. 3a). An effective solution is simply to increase the RF BW of the inversion pulse
(Fig. 3b). This increase in RF BW does increase SAR, but often only a single inversion pulse is
used for the acquisition of multiple lines of k-space (as in MP-RAGE), in which case the SAR
penalty is usually negligible.

5. Pulsatile flow artifacts

Pulsatile flow artifacts are more problematic at 3.0T for two main reasons. First, the increased
SNR at 3.0T translates into increased artifact-to-noise ratio. That is, a ghost artifact that might be
buried in the noise at 1.5T could be more easily visible at 3.0T. A second reason is increased
susceptibility variation (measured in hertz) at 3.0T aggravates pulsatile flow artifacts [17]. Just as



at 1.5T, common solutions include gradient moment nulling (i.e., flow compensation), and ECG
or peripheral triggering. With 3D acquisitions, it is also sometimes helpful to randomize the view
order to spread the artifacts over two dimensions. Non-Cartesian view orders (e.g., elliptical
centric or CENTRA) spread the artifacts more uniformly within the plane formed by the two
phase encoding directions, which makes the artifacts less conspicuous.

6. Central brightening (a.k.a. the “dielectric resonance’) artifact

Central brightening or “dielectric resonance” artifacts [18-20] often manifest as high signal
intensity in the center of the object (Fig. 4a). When the wavelength of the RF becomes
comparable to the size of the object, wave effects are often observed. A quantitative analysis
requires solutions to Maxwell’s equations as in [20].

The wavelength of RF in air is approximately 4 = 4.7 meters at 1.5T, and 4 = 2.35 meters at
3.0T. This wavelength is much greater than the size of the object to be imaged, so that central
brightening is not a problem when the wavelength in the medium is the same as in air. As
illustrated by Eqgs (6)-(9), the higher the dielectric constant of a medium, the slower the speed of
light, and the shorter the wavelength becomes. The dielectric constant of human tissue can be
appreciable in the RF frequency range [14], so that central brightening artifacts become more
important, especially at 3.0T.

Figure 4b shows an image comparable to Fig. 4a, but acquired with an oil-based (instead of a
water-based) phantom. The more uniform signal intensity and reduction in central brightening
artifact is apparent with the oil-based phantom, in which the RF wavelength is much longer.
Although the dielectric constant does have frequency dependence, the difference in Figs. 4aand b
is expected from the static dielectric constants of water (& = 80), and mineral oil (& = 2). For this
reason, oil-based phantoms are useful at 3.0T to measure SNR and map the true B1-sensitivity of
RF coils.

We have no control over the RF wavelength in human tissue at 3.0T, so other methods must be
used to reduce the central brightening artifact. These include: 1) Choosing an imaging protocol
that is relatively insensitive to flip angle. 2) Using a multi-channel phased-array receive coil.
Receive coils tend to have a stronger B1-sensitivity near the surface of the patient, which can
partially counteract the central brightening artifact. 3) Using an image post-processing method
[21] (such as N3 [22]) that can remove low spatial frequency intensity variation in the image
domain. 4) In the future, it might be possible to use advanced methods, such as crafted RF pulses,
and multiple transmit channels with Transmit SENSE to equalize the RF flip angle profile [23].

Conclusion

3.0T is an increasingly popular field strength for clinical MRI. Its advantages have been well
accepted for applications such as MR angiography, imaging of small structures of the MSK
anatomy, and functional neuro MRI. Several imaging artifacts, however, are more prominent at
3.0T compared to 1.5T. Understanding their physical origin can help manage these artifacts
through pulse sequence and image protocol design.
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Figure 1. Axial FLAIR image of a healthy volunteer at 3.0T. a) With a receiver bandwidth
of 122 Hz/pixel (i.e., +/-16kHz), chemical shift in the frequency-encoded direction causes
fat to overlap the brain (arrow). b) Doubling the receiver BW reduces the problem, at the
cost of decreased SNR.

Figure 2. Axial FLAIR image of a healthy volunteer at 3.0T. a) At an excitation bandwidth
of 700 Hz, chemical shift in the slice selection direction causes fat to overlap the brain
(arrows). b) Doubling the excitation BW of the excitation and refocusing pulses to 1400 Hz
reduces the problem, at the cost of increased SAR. (The decreased SNR in (b) is not a
general problem, and occurs here because this particular pulse sequence was not optimized
for hiaher BW RF pulses.)



Figure 3. Sagittal 3D FLAIR image of a healthy volunteer at 3.0T. a) With an inversion RF
bandwidth of 600 Hz, incomplete inversion in a region of rapid susceptibility variation
causes a bright spot artifact (arrow). b) Increasing the RF inversion BW to 2000 Hz resolves

the problem.

Figure 4. Images of spherical phantoms acquired with the same transmit/receive head coil,
and imaging protocol. a) Image displaying dielectric resonance artifact (bright region in the
center) with a water-based phantom. b) Oil-based phantom has more uniform image
appearance. The intensity variations on (b) reflect the actual B1-sensitivity of the RF coil.
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